Modular

Mojo + PyTorch: A Simpler Path to Custom Kernels

Spenser Bauman Compiler Engineer @ MODULAR INC. Oct 22, 2025

Agenda

01 Why Mojo & MAX?

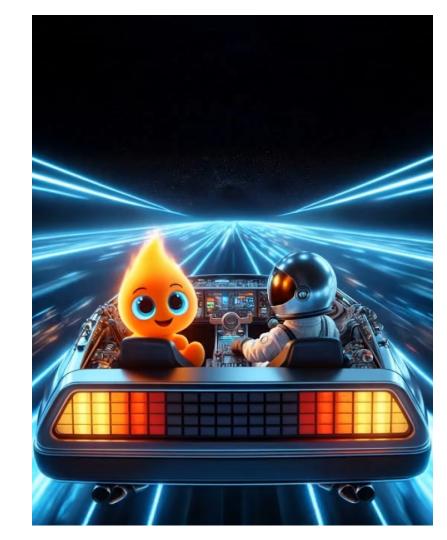
02 Write a custom kernel in Mojo

03 Interface to it easily from PyTorch

O4 Good performance without the pain

XWhat you won't see:

Hardware lock-in
PyBind, CMake, setuptools
Performance gaps
CUDA version mismatches
Library path problems



Why Mojo?

A look at existing performance libraries

Many are written in assembly...

... so much for abstraction even across members of an architectural family ...

```
rax, [rdx+r8*2]
vpmovzxbw ymm4,XMMWORD PTR [rdx]
vpmovzxbw ymm5, XMMWORD PTR [rdx+r8]
vpmovzxbw ymm6,XMMWORD PTR [rax]
vpmovzxbw ymm7, XMMWORD PTR [rax+r8]
        rax, [rcx+r11*4]
lea
vmovdqu YMMWORD PTR [rcx],ymm4
vmovdqu YMMWORD PTR [rcx+r11*2],ymm5
vmovdgu YMMWORD PTR [rax], ymm6
vmovdqu YMMWORD PTR [rax+r11*2],ymm7
vpaddw ymm0, ymm0, ymm4
vpaddw
       ymm1,ymm1,ymm5
vpaddw ymm2, ymm2, ymm6
vpaddw
       ymm3, ymm3, ymm7
add
        rdx,16
        rcx, 16*2
add
        rbx,16
sub
```


C++ Templates

```
Source: Composable Kernels
static constexpr auto GemmDefault =
   ck::tensor operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor operation::device::DeviceGemmXdl<</pre>
   ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout,
   AElementOp, BElementOp, CElementOp, GemmDefault, 256, 128, 128, 4, 2, 16,
   16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, true, S<4, 64, 1>,
   S<1, 0, 2>, S<1, 0, 2>, 2, 2, true, 7, 1>;
using ReferenceGemmInstance =
   ck::tensor operation::host::ReferenceGemm<ADataType, BDataType, CDataType,
                                             AccDataType, AElementOp,
                                        BElementOp, CElementOp>;
#include "run gemm example.inc"
```


C++ DSL for ASM

```
Source: OneDNN
  L(labels[4]);
  test(K, 2);
  jle(labels[5], T NEAR);
  innerkernel2(unroll m, unroll n, isLoad1Unmasked, isLoad2Unmasked, isDirect,
                isCopy, useFma, reg00, reg01, reg02, reg03, reg04, reg05,
                reg06, reg07, reg08, reg09, reg10, reg11, reg12, reg13, reg14,
                reg15, reg16, reg17, reg18, reg19, reg20, reg21, reg22, reg23);
   align(16);
  L(labels[5]);
  if (unroll m == 16) {
       if (unroll n <= 3) {</pre>
          vaddps(reg00, reg00, reg12);
          vaddps(reg01, reg01, reg13);
          vaddps(reg02, reg02, reg14);
          vaddps(reg06, reg06, reg18);
          vaddps(reg07, reg07, reg19);
          vaddps(reg08, reg08, reg20);
```


Python program to generate ASM

```
Source: Tensile
  for iui in range(0, innerUnroll):
      for idx1 in range(0, kernel["ThreadTile1"]):
          for idx0 in range(0, kernel["ThreadTile0"]):
              vars["idx0"] = idx0
              vars["idx1"] = idx1
              vars["a"] = idx0 if writer.tPB["tile01Idx"] else idx1
              vars["b"] = idx1 if writer.tPB["tile01Idx"] else idx0
              vars["iui"] = iui
              vars["cStr"] = "v[vgprValuC + {idx0} + {idx1}*{ThreadTile0}]".format_map(vars)
              vars["aStr"] = "v[vgprValuA_X{m}_I{iui} + {a}]".format_map(vars)
              vars["bStr"] = "v[vqprValuB X{m} I{iui} + {b}]".format map(vars)
              if instruction == "v_fma_f32":
                  kStr += "v fma f32 {cStr}, {aStr}, {bStr}, {cStr}{endLine}".format map(vars)
              else:
                  kStr += "{instruction} {cStr}, {aStr}, {bStr}{endLine}".format map(vars)
              kStr += priority(writer, 1, "Raise priority while processing macs")
```

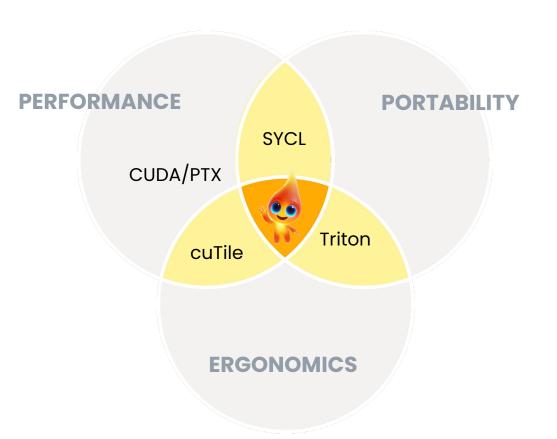

Template (but not templates) to generate C++

```
Source: XNNPack
const    m128i vsign mask =
    _mm_load_si128((const __m128i*)params->${PARAMS_STRUCT}.sign_mask);
const __m256 vsat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.sat_cutoff);
const __m256 vlog2e = _mm256_load_ps(params->${PARAMS_STRUCT}.log2e);
const __m256 vmagic_bias = _mm256_load_ps(params->${PARAMS_STRUCT}.magic_bias);
const __m256 vminus_ln2 = _mm256_load_ps(params->${PARAMS_STRUCT}.minus_ln2);
$for i in reversed(range(2, P + 1))
    : const __m256 vc${i} = _mm256_load_ps(params->${PARAMS_STRUCT}.c${i});
$if P != H + 1 : const __m256 vminus_one =
    _mm256_load_ps(params->${PARAMS_STRUCT}.minus_one);
const m256 vtwo = mm256_load_ps(params->${PARAMS_STRUCT}.two);
$if P == H + 1 : const m256 vminus one =
    _mm256_load_ps(params->${PARAMS_STRUCT}.minus_one);
```

Pervasive suffering

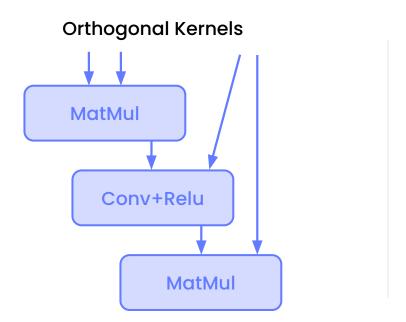
Maintainability, debugging, tooling, ...

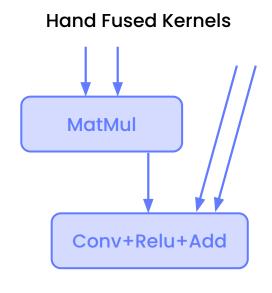
Choose: Performance or Ease of Use



Why MAX?

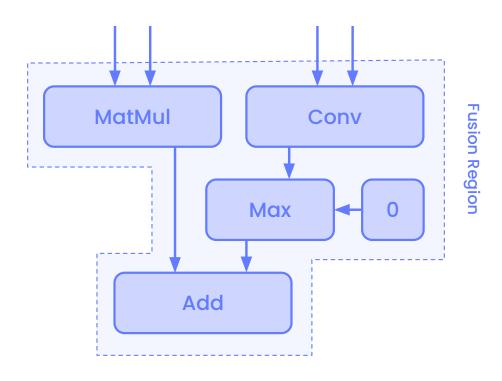
It started with Frameworks with Large Kernel Libraries





Thousands of kernels later: it doesn't scale!

Then: AI Compilers To Rescue?



There's a problem ... generality!

Many common limitations...

- Dynamic shapes
- Sparsity
- Quantization
- Custom ops
- Embedded support
- Model coverage

GenAl changed the game:

- Continuous innovation in attention and other mechanisms: more explosion of fused kernels
- Diversity of KVCache optimizations
- Performance/TCO is critical for inference

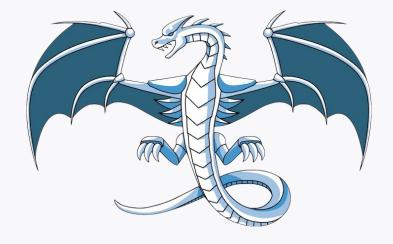
"Generality is, indeed, an indispensable ingredient of reality; for mere individual existence or actuality without any regularity whatever is a nullity. Chaos is pure nothing.

- Charles Sanders Peirce

Difficult to hire compiler engineers ...

- ... who have AI modeling experience, and
- ... who know exotic numerics, and
- ... who know specialized HW details

Al Research cannot rely on: "compiler engineer in-the-loop"!



MAX - Modular Accelerated execution

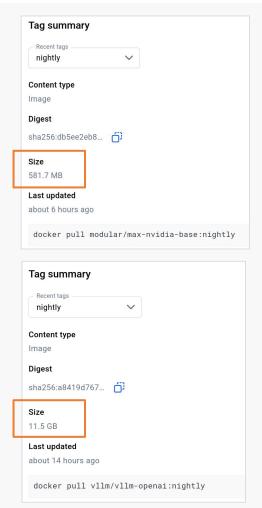
- Mojo Programming Language: System-level performance with Python syntax
- **Python Graph API**: Familiar PyTorch-like interface
- Graph Compiler: Automatic optimization and fusion
- **Optimized GPU Kernels**: Hardware-specific optimizations
- Hardware Abstraction: Write once, run anywhere

A Pythonic System Programming Language

- Modern high-level systems language
- Hardware agnostic (CPU and GPU)
- Memory safety, powerful metaprogramming system
- Full toolchain + VS Code + LSP support
- Best of both worlds: productivity AND performance

Cross-Platform Hardware Support

- Supports CPU and GPU targets without vendor lock-in
- Works with Nvidia, AMD (Apple Silicon in nightlies)
- Significantly smaller container sizes vs competitors (600MB vs 11GB)



Write a custom kernel in Mojo

Anatomy of a Mojo Kernel

Fusion Properties

Parallelize/Vectorize across CPU or GPU

```
@compiler.register("grayscale") ______ Registered name
struct Grayscale:
   @staticmethod
   fn execute[
                                       Entry point
       target: StaticString,
   ] (
       img_out: FusedOutputTensor[dtype=float32, rank=2],
       img_in: InputTensor[dtype=float32, rank=3],
       ctx: DeviceContextPtr,
      raises:
       @parameter
       fn color_to_grayscale[
           width: Int
       ](idx: IndexList[img_out.rank]) -> SIMD[float32, width]:
           var row, col = idx[0], idx[1]
           var r = img_in.load[width](Index(0, row, col))
           var g = img_in.load[width](Index(1, row, col))
           var b = img_in.load[width](Index(2, row, col))
           return 0.21 * r + 0.71 * g + 0.07 * b
     foreach[color_to_grayscale, target=target](img_out, ctx)
```

Structured Inputs (not pointers)

And how does it perform?

Triton vs Mojo Grayscale Throughput



Image size: 16000x16000

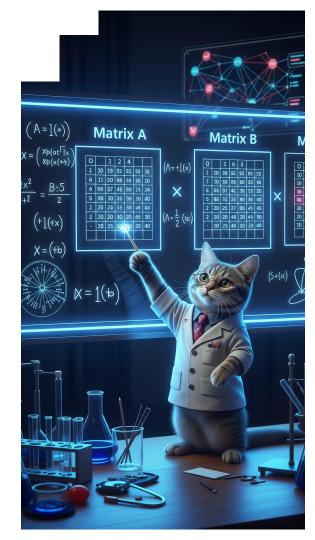
What about something more realistic?

At Modular, all our kernels are implemented in Mojo

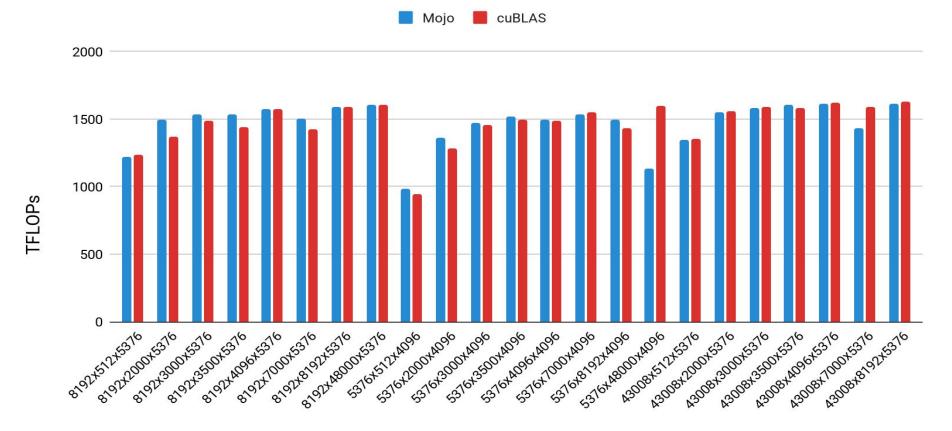
1... for all the hardwares we support: CPUs + 7 major GPU architectures from 3 different vendors (NV, AMD, Apple),

... and get SOTA throughput on production models,

... so how do we do on performance critical kernels?



Mojo vs cuBLAS (B200) Matrix Multiplication



2 APIs to Integrate Mojo into PyTorch

- 1. An API to directly call custom kernels
- 2. An API to call full MAX graphs

Call Your Kernel from PyTorch

Load your library of custom kernels (no compile step):

```
custom_ops = CustomOpLibrary("path/to/ops")
```

Wrap the destination passing kernel:

```
@torch.compile
def max_grayscale(x: torch.Tensor) -> torch.Tensor:
    result = torch.empty(x.shape[1:], dtype=x.dtype, device=x.device)
    custom_ops.grayscale(result, x)
    return result
```

Compatible with "fullgraph=True"

When to use this API

Tradeoffs for this API:

- Simple for a small number of kernels
- XOverhead due to __dlpack__ & stream synchronization
- XIntroduced optimization boundaries (no fusion)

Integrate with MAX Graphs

This API:

- XMore work for single ops
- Scales beyond a single operation
- Less marshalling/dispatch overhead
- ✓ More optimization opportunities

```
@max.torch.graph_op
def max_grayscale_graph(
    pic: max.graph.TensorValue
) -> max.graph.TensorValue:
    c. h. w = pic.shape
    scale = ops.constant(
        np.array([0.21, 0.71, 0.07]),
        dtype=DType.float32,
        device=DeviceRef.GPU()
    ).reshape([c, 1, 1])
    scaled = pic * ops.broadcast_to(scale, (c, h, w))
    grayscaled = ops.sum(scaled, axis=0)
   # max reductions don't remove the dimension, need to squeeze
    return ops.squeeze(grayscaled, axis=0)
```

Key Takeaways

- Prototype and optimize kernels in one system
- No vendor lock-in
- Easy integration with PyTorch 3.

Thank You

Custom ops tutorial modul.ar/ptc-ops

Support & discussion forum.modular.com

Optimizing Matmul on Blackwell: https://www.modular.com/matrix-multiplication-on-blackwell

