
Mojo + PyTorch:
A Simpler Path to Custom Kernels

Spenser Bauman
Compiler Engineer @
MODULAR INC.

Oct 22, 2025

Agenda

02

Interface to it easily from PyTorch03

Good performance without the pain

01

Write a custom kernel in Mojo

❌What you won’t see:

Hardware lock-in

PyBind, CMake, setuptools

Performance gaps

CUDA version mismatches

Library path problems

Why Mojo & MAX?

04

Why Mojo?

A look at existing
performance
libraries

Many are
written in
assembly…
… so much for abstraction
even across members of an
architectural family …

C++ Templates

Source: Composable Kernels

6

C++ DSL for ASM

7

Source: OneDNN

Python program to generate ASM

8

Source: Tensile

Template (but not templates)
to generate C++

9

Source: XNNPack

Pervasive
suffering
Maintainability,
debugging, tooling, …

CUDA/PTX

Triton
cuTile

Choose:
Performance or
Ease of Use

SYCL

PERFORMANCE PORTABILITY

ERGONOMICS

Why MAX?

It started with Frameworks with
Large Kernel Libraries

MatMul

Conv+Relu

MatMul

MatMul

Conv+Relu+Add

Hand Fused KernelsOrthogonal Kernels

Thousands of kernels later: it doesn't scale!

Then: AI Compilers To Rescue?

MatMul

Max

Add

There's a problem … generality!

Conv

0

Fusion Region

But: Where is Generality?
Many common limitations…
■ Dynamic shapes
■ Sparsity
■ Quantization
■ Custom ops
■ Embedded support
■ Model coverage

"Generality is, indeed, an
indispensable ingredient of
reality; for mere individual
existence or actuality
without any regularity
whatever is a nullity.
Chaos is pure nothing.

- Charles Sanders Peirce

GenAI changed the game:
■ Continuous innovation in attention and other

mechanisms: more explosion of fused kernels

■ Diversity of KVCache optimizations

■ Performance/TCO is critical for inference

Difficult to hire compiler engineers …

Challenge: Compiler
Scalability!

■ … who have AI modeling experience, and

■ … who know exotic numerics, and

■ … who know specialized HW details

AI Research cannot rely on:
"compiler engineer in-the-loop"!

MAX - Modular Accelerated eXecution

■ 🔥 Mojo Programming Language: System-level performance with Python syntax

■ 📊 Python Graph API: Familiar PyTorch-like interface

■ ⚙ Graph Compiler: Automatic optimization and fusion

■ 💎 Optimized GPU Kernels: Hardware-specific optimizations

■ 🔧 Hardware Abstraction: Write once, run anywhere

To the rescue

A Pythonic System Programming Language

■ Modern high-level systems language
■ Hardware agnostic CPU and GPU
■ Memory safety, powerful metaprogramming system
■ Full toolchain + VS Code + LSP support
■ Best of both worlds: productivity AND performance

Cross-Platform Hardware Support

■ Supports CPU and GPU targets without vendor lock-in
■ Works with Nvidia, AMD Apple Silicon in nightlies)
■ Significantly smaller container sizes vs competitors

600MB vs 11GB

Why
& ?

Write a custom
kernel in Mojo

@compiler.register("grayscale")

struct Grayscale:

 @staticmethod

 fn execute[

 target: StaticString,

](

 img_out: FusedOutputTensor[dtype=float32, rank=2],

 img_in: InputTensor[dtype=float32, rank=3],

 ctx: DeviceContextPtr,

) raises:

 @parameter

 fn color_to_grayscale[

 width: Int

](idx: IndexList[img_out.rank]) -> SIMD[float32, width]:

 var row, col = idx[0], idx[1]

 var r = img_in.load[width](Index(0, row, col))

 var g = img_in.load[width](Index(1, row, col))

 var b = img_in.load[width](Index(2, row, col))

 return 0.21 * r + 0.71 * g + 0.07 * b

 foreach[color_to_grayscale, target=target](img_out, ctx)

Anatomy
of a Mojo

Kernel

Entry point

Structured Inputs
(not pointers)

Fusion
Properties

Parallelize/Vectorize
across CPU or GPU

Registered name

And how does it perform?

Image size: 16000x16000

What about something
more realistic?

At Modular, all our kernels are implemented in Mojo

󰳙… by a relatively small team of engineers 10 people),

🛠… for all the hardwares we support: CPUs + 7 major
GPU architectures from 3 different vendors NV, AMD,
Apple),

🚀… and get SOTA throughput on production models,

🔥… so how do we do on performance critical kernels?

Matrix Multiplication

2 APIs to Integrate
Mojo into PyTorch

1. 👟 An API to directly call custom kernels

2. 📈 An API to call full MAX graphs

Call Your Kernel from PyTorch

custom_ops = CustomOpLibrary("path/to/ops")

@torch.compile

def max_grayscale(x: torch.Tensor) -> torch.Tensor:

 result = torch.empty(x.shape[1:], dtype=x.dtype, device=x.device)

 custom_ops.grayscale(result, x)

 return result

Load your library of custom kernels (no compile step):

Wrap the destination passing kernel:

Compatible with “fullgraph=Trueˮ

When to use this API

Tradeoffs for this API:

✅Simple for a small number of kernels

❌Overhead due to __dlpack__ & stream synchronization

❌Introduced optimization boundaries (no fusion)

Integrate with MAX
Graphs

@max.torch.graph_op

def max_grayscale_graph(
 pic: max.graph.TensorValue

) -> max.graph.TensorValue:

 c, h, w = pic.shape

 scale = ops.constant(

 np.array([0.21, 0.71, 0.07]),

 dtype=DType.float32,

 device=DeviceRef.GPU()

).reshape([c, 1, 1])

 scaled = pic * ops.broadcast_to(scale, (c, h, w))

 grayscaled = ops.sum(scaled, axis=0)

 # max reductions don't remove the dimension, need to squeeze

 return ops.squeeze(grayscaled, axis=0)

This API:

❌More work for single ops

✅Scales beyond a single operation

✅Less marshalling/dispatch overhead

✅More optimization opportunities

Key Takeaways
 🐍 + 🔥 = 😎

1. Prototype and optimize kernels in
one system

2. No vendor lock-in

3. 🆕 Easy integration with PyTorch

Thank You

Optimizing Matmul on Blackwell:
https://www.modular.com/matrix-multiplication-on-blackwell

Custom ops tutorial
modul.ar/ptc-ops

Support & discussion
forum.modular.com

https://www.modular.com/matrix-multiplication-on-blackwell
http://modul.ar/ptc-ops
http://forum.modular.com

