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Why Mojo?



A look at existing 
performance 
libraries



Many are 
written in 
assembly…
… so much for abstraction 
even across members of an 
architectural family … 



C++ Templates

Source: Composable Kernels
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C++ DSL for ASM
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Source: OneDNN



Python program to generate ASM 
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Source: Tensile



Template (but not templates)
to generate C++ 
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Source: XNNPack



Pervasive 
suffering
Maintainability, 
debugging, tooling,  …



CUDA/PTX

Triton
cuTile

Choose: 
Performance or 
Ease of Use

SYCL

PERFORMANCE PORTABILITY

ERGONOMICS



Why MAX?



It started with Frameworks with 
Large Kernel Libraries

MatMul

Conv+Relu

MatMul

MatMul

Conv+Relu+Add 

Hand Fused KernelsOrthogonal Kernels

Thousands of kernels later: it doesn't scale!



Then: AI Compilers To Rescue?

MatMul

Max

Add

There's a problem … generality!

Conv

0

Fusion Region



But: Where is Generality?
Many common limitations…
■ Dynamic shapes
■ Sparsity
■ Quantization
■ Custom ops
■ Embedded support
■ Model coverage

"Generality is, indeed, an 
indispensable ingredient of 
reality; for mere individual 
existence or actuality 
without any regularity 
whatever is a nullity. 
Chaos is pure nothing.

- Charles Sanders Peirce

GenAI changed the game:
■ Continuous innovation in attention and other 

mechanisms: more explosion of fused kernels

■ Diversity of KVCache optimizations

■ Performance/TCO is critical for inference



Difficult to hire compiler engineers …

Challenge: Compiler 
Scalability!

■ … who have AI modeling experience, and

■ … who know exotic numerics, and

■ … who know specialized HW details  

AI Research cannot rely on:
"compiler engineer in-the-loop"!



MAX - Modular Accelerated eXecution

■ 🔥 Mojo Programming Language: System-level performance with Python syntax

■ 📊 Python Graph API: Familiar PyTorch-like interface

■ ⚙ Graph Compiler: Automatic optimization and fusion

■ 💎 Optimized GPU Kernels: Hardware-specific optimizations

■ 🔧 Hardware Abstraction: Write once, run anywhere

To the rescue



A Pythonic System Programming Language

■ Modern high-level systems language
■ Hardware agnostic CPU and GPU
■ Memory safety, powerful metaprogramming system
■ Full toolchain + VS Code + LSP support
■ Best of both worlds: productivity AND performance

Cross-Platform Hardware Support

■ Supports CPU and GPU targets without vendor lock-in
■ Works with Nvidia, AMD Apple Silicon in nightlies)
■ Significantly smaller container sizes vs competitors 

600MB vs 11GB

Why
& ?



Write a custom 
kernel in Mojo



@compiler.register("grayscale")

struct Grayscale:

    @staticmethod

    fn execute[

        target: StaticString,

    ](

        img_out: FusedOutputTensor[dtype=float32, rank=2],

        img_in: InputTensor[dtype=float32, rank=3],

        ctx: DeviceContextPtr,

    ) raises:

        @parameter

        fn color_to_grayscale[

            width: Int

        ](idx: IndexList[img_out.rank]) -> SIMD[float32, width]:

            var row, col = idx[0], idx[1]

            var r = img_in.load[width](Index(0, row, col))

            var g = img_in.load[width](Index(1, row, col))

            var b = img_in.load[width](Index(2, row, col))

            return 0.21 * r + 0.71 * g + 0.07 * b

        foreach[color_to_grayscale, target=target](img_out, ctx)

Anatomy 
of a Mojo 

Kernel

Entry point

Structured Inputs 
(not pointers)

Fusion 
Properties

Parallelize/Vectorize 
across CPU or GPU

Registered name



And how does it perform?

Image size: 16000x16000



What about something 
more realistic?

At Modular, all our kernels are implemented in Mojo

󰳙… by a relatively small team of engineers 10 people),

🛠… for all the hardwares we support: CPUs + 7 major 
GPU architectures from 3 different vendors NV, AMD, 
Apple),

🚀… and get SOTA throughput on production models,

🔥… so how do we do on performance critical kernels?



Matrix Multiplication



2 APIs to Integrate 
Mojo into PyTorch

1. 👟 An API to directly call custom kernels

2. 📈 An API to call full MAX graphs



Call Your Kernel from PyTorch

custom_ops = CustomOpLibrary("path/to/ops")

@torch.compile

def max_grayscale(x: torch.Tensor) -> torch.Tensor:

    result = torch.empty(x.shape[1:], dtype=x.dtype, device=x.device)

    custom_ops.grayscale(result, x)

    return result

Load your library of custom kernels (no compile step):

Wrap the destination passing kernel:

Compatible with “fullgraph=Trueˮ



When to use this API

Tradeoffs for this API:

✅Simple for a small number of kernels

❌Overhead due to __dlpack__ & stream synchronization

❌Introduced optimization boundaries (no fusion)



Integrate with MAX 
Graphs

@max.torch.graph_op

def max_grayscale_graph(
    pic: max.graph.TensorValue

) -> max.graph.TensorValue:

    c, h, w = pic.shape

    scale = ops.constant(

        np.array([0.21, 0.71, 0.07]),

        dtype=DType.float32,

        device=DeviceRef.GPU()

    ).reshape([c, 1, 1])

    scaled = pic * ops.broadcast_to(scale, (c, h, w))

    grayscaled = ops.sum(scaled, axis=0)

    # max reductions don't remove the dimension, need to squeeze

    return ops.squeeze(grayscaled, axis=0)

This API:

❌More work for single ops

✅Scales beyond a single operation

✅Less marshalling/dispatch overhead

✅More optimization opportunities



Key Takeaways
 🐍 + 🔥 = 😎

1. Prototype and optimize kernels in 
one system

2. No vendor lock-in

3. 🆕 Easy integration with PyTorch



Thank You

Optimizing Matmul on Blackwell: 
https://www.modular.com/matrix-multiplication-on-blackwell

Custom ops tutorial
modul.ar/ptc-ops

Support & discussion 
forum.modular.com

https://www.modular.com/matrix-multiplication-on-blackwell
http://modul.ar/ptc-ops
http://forum.modular.com

